Statistical mechanics of protein-like heteropolymers
نویسندگان
چکیده
منابع مشابه
Statistical mechanics of protein-like heteropolymers.
A strategy is outlined for obtaining the free energy of a typical designed heteropolymer. The design procedure considers the probability that the target conformation is occupied in comparison with all the other conformations that could house the given sequence. Numerical calculations on lattice heteropolymer models are presented to illustrate the key physical principles.
متن کاملFolding Kinetics of Protein Like Heteropolymers
Using a simple three-dimensional lattice copolymer model and Monte Carlo dynamics, we study the collapse and folding of protein-like heteropolymers. The polymers are 27 monomers long and consist of two monomer types. Although these chains are too long for exhaustive enumeration of all conformations, it is possible to enumerate all the maximally compact conformations, which are 3×3×3 cubes. This...
متن کاملMonte carlo simulations of protein-like heteropolymers.
Properties of a simple model of polypeptide chains were studied by the means of the Monte Carlo method. The chains were built on the (310) hybrid lattice. The residues interacted with long-range potential. There were two kinds of residues: hydrophobic and hydrophilic forming a typical helical pattern -HHPPHPP-. Short range potential was used to prefer helical conformations of the chain. It was ...
متن کاملLattice model for rapidly folding protein-like heteropolymers.
Protein folding is a relatively fast process considering the astronomical number of conformations in which a protein could find itself. Within the framework of a lattice model, we show that one can design rapidly folding sequences by assigning the strongest attractive couplings to the contacts present in a target native state. Our protein design can be extended to situations with both attractiv...
متن کاملStatistical mechanics of correlated energy landscape models for random heteropolymers and proteins
We study the role of correlations in the energy landscape of heteropolymers and proteins, specifically their role in the glass transition in random heteropolymers and the folding transition in minimally frustrated proteins. In the context of the glass transition, a correlated landscape results in a more gradual freezing into basins of extensive entropy, while not completely destroying the first...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1999
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.96.9.4904